skip to main content


Search for: All records

Creators/Authors contains: "Shingles, L."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. ABSTRACT

    Type Iax supernovae (SNe Iax) are proposed to arise from deflagrations of Chandrasekhar mass white dwarfs (WDs). Previous deflagration simulations have achieved good agreement with the light curves and spectra of intermediate-luminosity and bright SNe Iax. However, the model light curves decline too quickly after peak, particularly in red optical and near-infrared (NIR) bands. Deflagration models with a variety of ignition configurations do not fully unbind the WD, leaving a remnant polluted with 56Ni. Emission from such a remnant may contribute to the luminosity of SNe Iax. Here we investigate the impact of adding a central energy source, assuming instantaneous powering by 56Ni decay in the remnant, in radiative transfer calculations of deflagration models. Including the remnant contribution improves agreement with the light curves of SNe Iax, particularly due to the slower post-maximum decline of the models. Spectroscopic agreement is also improved, with intermediate-luminosity and faint models showing greatest improvement. We adopt the full remnant 56Ni mass predicted for bright models, but good agreement with intermediate-luminosity and faint SNe Iax is only possible for remnant 56Ni masses significantly lower than those predicted. This may indicate that some of the 56Ni decay energy in the remnant does not contribute to the radiative luminosity but instead drives mass ejection, or that escape of energy from the remnant is significantly delayed. Future work should investigate the structure of remnants predicted by deflagration models and the potential roles of winds and delayed energy escape, as well as extend radiative transfer simulations to late times.

     
    more » « less
  2. ABSTRACT

    We present an in-depth study of the late-time near-infrared plateau in Type Ia supernovae (SNe Ia), which occurs between 70 and 500 d. We double the existing sample of SNe Ia observed during the late-time near-infrared plateau with new observations taken with the Hubble Space Telescope, Gemini, New Technology Telescope, the 3.5-m Calar Alto Telescope, and the Nordic Optical Telescope. Our sample consists of 24 nearby SNe Ia at redshift < 0.025. We are able to confirm that no plateau exists in the Ks band for most normal SNe Ia. SNe Ia with broader optical light curves at peak tend to have a higher average brightness on the plateau in J and H, most likely due to a shallower decline in the preceding 100 d. SNe Ia that are more luminous at peak also show a steeper decline during the plateau phase in H. We compare our data to state-of-the-art radiative transfer models of nebular SNe Ia in the near-infrared. We find good agreement with the sub-Mch model that has reduced non-thermal ionization rates, but no physical justification for reducing these rates has yet been proposed. An analysis of the spectral evolution during the plateau demonstrates that the ratio of [Fe ii] to [Fe iii] contribution in a near-infrared filter determines the light curve evolution in said filter. We find that overluminous SNe decline slower during the plateau than expected from the trend seen for normal SNe Ia.

     
    more » « less